Information Retrieval Systems Class Notes (May 7, 2014)

Prepared by: Hamed Rezanejad

Signature file:

- All the signatures that represent the documents in the collection are kept in a file called "signature file".
- Each document is divided into blocks containing an equal number of distinct words (possibly not the last one).
- If we consider each document like below (each block have same number of terms):

Block 1
Block 2
Block 3
Block n

✓ For last block we may have less number of terms.

Example:

Term	Term signature
Object	1000 1000
Signature	0010 0100
Generation	1000 0100
	1010 1100

✓ The last row is block signature which we consider the number of 1's in the block.

How we can make sure that 50%=1 and 50%=0?

Number of bits to be set in term signature =
$$\frac{F Ln2}{D}$$

- o F: signature size in bits
- o D: no. of unique terms in a block

Query	Query signature	Result
Database	1100 0000	No match
generation	1000 0100	True match
information	1010 0000	False match

If ([(Q_s) and (block signature)] = Q_s)

Then we consider the block as a possible match.

False drop resolution: After each match we have to eliminate possible false matches

Sequential signature file:

S1	0001 1110	Doc 1
S2	1101 0001	Doc 2
S3	0011 1100	Doc 3
S4	1100 0011	Doc 4
S5	0011 0110	Doc 5
S6	1100 1001	Doc 6

Bit-sliced signature:

C1	010 101	
C2	010 101	
C3	001 010	
C4	111 010	
C 5	101 001	
C6	101 010	
C7	100 110	
C8	010 101	

Storage sample:

010 101	010 101	001 010	

✓ If we have additions to signature we have to shift the bit arrays in storage which takes huge amount of process.

Assume we have a query like "generation" => Q_s: 1000 0100

We got bit-sliced signature for all 1's of guery and AND them bit by bit:

<u>C1</u>	010 101 101 010
AND's result	000 000

- ✓ After processing a number of bit slices it may be more efficient to do false drop resolution rather than accessing another bit slice.
- ✓ Remember that a bit slice may occupy several disk pages
- ✓ Perform partial evaluation (i.e. do not process all 1 bits of query signature)

Let:

$$\mathbf{op} = \frac{Number\ of\ 1's\ in\ a\ signature}{signature\ length}$$
 it should be approximately 0.5

fd: False Drop probability =
$$\frac{number\ of\ matches}{number\ of\ signatures\ (number\ of\ blocks)}$$

Note that we assume that all of matches are false drops, since number of true matches is very small.

Response time after processing i number of bits: RT(i)

RT(i) = i.
$$T_{slice} + N. op^{i}$$
. $T_{resolve}$

T_{slice}: time required to access a bit slice

T_{resolve}: time required to resolve (eliminate) a false drop

To find i value for the minimum response time we take the derivate of RT(i) with respect to i.

$$\frac{d(RT(i))}{di} = T_{slice} + N.T_{resolve}.op^{i}.\ln(op)$$

To find the optimum value of i let the above equation equal to 0 and solve it for i:

$$\mathsf{Op^i} = \frac{\mathit{Tslice}}{\mathit{N.Tresolve.}(\ln(\mathit{op}))}$$

Ln opⁱ = i ln(op) = ln(
$$\frac{Tslice}{N.Tresolve(ln(op))}$$
)

$$i = ln(\frac{Tslice}{N.Tresolve(lnop)})/ln(op)$$

if (i > weight of query(number of 1's in query))

then (use only the bits available in the query)

Reference: Seyit Kocberber, Fazli Can: Partial Evaluation of Queries for Bit-Sliced Signature Files. *Inf. Process. Lett.* 60(6): 305-311 (1996)

Signature file partitioning

S1	0111 1000
S2	1000 1011
S 3	0011 1100
S4	1100 0011
S5	0110 1100
S6	1001 0011
S7	0000 1111

Fixed prefix partitioning:

• Use 1 bit: k=1 =>

0 \$1 \$3 \$5 \$7

1 S2 S4 S6

• Use 2 bit: k=2 =>

00 S3 S7

01 S1 S5 11 S4

• Use 3 bit: k=3 =>

000	001	010	011	100	101	110	111
S7	S3		S1	S2		S4	
			S5	S6			

10

S2

S6

Q1: 1110 0001

Q2: 0000 1111

Q3: 0110 0011

If $(Q_s \& B_s = Q_s)$

Then consider the block and match Q_s with individual signature of the block for matching block signature perform false drop resolution.

$$\{P_i \mid P_{key} \cap Q_{key} = Q\}$$

 $\mbox{PAR: Partition Activation Ratio} = \frac{\mbox{\it Number of partition activated (selected)}}{\mbox{\it total number of partitions}}$

SAR: Signature Activation Ratio = $\frac{Number\ of\ signature\ in\ the\ activation\ partition}{total\ number\ of\ signatures}$

	K=1	K=2	K=3	PAR (k=1)	SAR (K=1)	PAR (k=2)	SAR (K=2)	PAR (k=3)	SAR (K=3)
Q1: 100	1(1)*	2 (10, 11)	4(100, 101, 110, 111)	1/2	3/7	2/4	3/7	4/8	3/7
Q2: 000	2(0, 1)	4 (00, 01, 10, 11)	8(all)	2/2	7/7	4/4	7/7	8/8	7/7
Q3: 011 * No of partition	2(0, 1) ons (matchi	2 (01, 11) ng partition query)	2(011, 111)	2/2	7/7	2/4	3/7	2/8	2/7

✓ Signature partition with a key that contains all 1's matching all queries. Number of partitions matching the query signature = 2.

Reference: Dik Lun Lee, Chun-Wu Roger Leng: Partitioned Signature Files: Design Issues and Performance Evaluation. *ACM Trans. Inf. Syst.* 7(2): 158-180 (1989).

Questions:

- 1. If we have 3 unique terms in our block and we have 12 bits for each term's signature, what would be the number of 1s in each term signature?
- ✓ We know that:

Number of bits to be set in term signature =
$$\frac{F Ln2}{D}$$

So we can say that: 12*ln2/3 = 2.77 => we have 3

2. Consider below signature:

Term	Term signature
Free	0001 0100 0010
Text	0100 0010 0001
Data	1000 0010 0010
Block signature	1101 0110 0011

False drop happens generally in which situations? What are the possible reasons of false drop?

- ✓ False drop occurs when a document's signature matches a query's signature but the query's word does not match any word in the document.
- ✓ It is possible because 2 distinct blocks may have the same signatures due to:
 - o the hashing algorithm
 - o superimposed coding
- 3. Is it possible to have different PAR and SAR values? Explain your answer.
- ✓ Yes: Different blocks may have different number of signatures.